关键词 |
PCB多层线路板 |
面向地区 |
PCB线路板过孔对信号传输的影响作用
过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每一个孔都可以称之为过孔。
一、过孔的寄生电容
过孔本身存在着对地的寄生电容,如果已知过孔在铺地层上的隔离孔直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:C=1.41εTD1/(D2-D1)过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用内径为10Mil,焊盘直径为20Mil的过孔,焊盘与地铺铜区的距离为32Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是:C=1.41x4.4x0.050x0.020/(0.032-0.020)=0.517pF,这部分电容引起的上升时间变化量为:T10-90=2.2C(Z0/2)=2.2x0.517x(55/2)=31.28ps 。从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,设计者还是要慎重考虑的。
二、过孔的寄生电感
同样,过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的公式来简单地计算一个过孔近似的寄生电感:L=5.08h[ln(4h/d)+1]其中L指过孔的电感,h是过孔的长度,d是中心钻孔的直径。从式中可以看出,过孔的直径对电感的影响较小,而对电感影响大的是过孔的长度。仍然采用上面的例子,可以计算出过孔的电感为:L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH。如果信号的上升时间是1ns,那么其等效阻抗大小为:XL=πL/T10-90=3.19Ω。这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。
联兴华电子深圳pcb线路板厂家,公司成立于2005年,是一家以生产批量。样板及快板PCB为主的企业,提供单面pcb线路板、双面pcb线路板、pcb多层线路板、PCB线路板制作生产,PCB线路板产品等快速打样、深圳电路板制作17年行业经验。
三、高速PCB中的过孔设计
通过上面对过孔寄生特性的分析,我们可以看到,在高速PCB设计中,看似简单的过孔往往也会给电路的设计带来很大的负面效应。为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到:
1、从成本和信号质量两方面考虑,选择合理尺寸的过孔。比如对6-10层的内存模块PCB设计来说,选用10/20Mil(钻孔/焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使用8/18Mil的过孔。目前技术条件下,很难使用更小尺寸的过孔了。对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗。
2.上面讨论的两个公式可以得出,使用较薄的PCB板有利于减小过孔的两种寄生参数。
3、电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好,因为它们会导致电感的增加。同时电源和地的引线要尽可能粗,以减少阻抗。
4、PCB板上的信号走线尽量不换层,也就是说尽量不要使用不必要的过孔。
5、在信号换层的过孔附近放置一些接地的过孔,以便为信号提供近的回路。甚至可以在PCB板上大量放置一些多余的接地过孔。当然,在设计时还需要灵活多变。前面讨论的过孔模型是每层均有焊盘的情况,也有的时候,我们可以将某些层的焊盘减小甚至去掉。特别是在过孔密度非常大的情况下,可能会导致在铺铜层形成一个隔断回路的断槽,解决这样的问题除了移动过孔的位置,我们还可以考虑将过孔在该铺铜层的焊盘尺寸减小。
PCB线路板贴干膜常见问题及解决方法汇总
随着电子行业的不断发展,产品的不断升级,为了节省板子的空间,很多板子在设计的时候的线都已经非常小了,以前的湿膜已经不能满足现在的图形转移工艺了,现在一般小线都用干膜来生产,那么我们在贴膜过程中有哪些问题呢,下面小编来介绍一下。
PCB线路板贴干膜常见问题及解决方法汇总
1、干膜与铜箔表面之间出现气泡
(1)不良问题:选择平整的铜箔,是无气泡的关键。
解决方法:增大PCB贴膜压力,板材传递要轻拿轻放。
(2)不良问题:热压辊表面不平,有凹坑和胶膜钻污。
解决方法:定期检查和保护热压辊表面的平整。
(3)不良问题:PCB贴膜温度过高,导致部分接触材料因温差而产生皱皮。
解决方法:降低PCB贴膜温度。
2、干膜在铜箔上贴不牢
(1)不良问题:在处理铜箔表面是没有进行合理的清洁,直接上手操作会留下油污或氧化层。
解决方法:应戴手套进行洗板。
(2)不良问题:干膜溶剂品质不达标或已过期。
解决方法:生产厂家应该选择干膜以及定期检查干膜保质期。
(3)不良问题:传送速度快,PCB贴膜温度低。
解决方法:改变PCB贴膜速度与PCB贴膜温度。
(4)不良问题:加工环境湿度过高,导致干膜粘结时间延长。
解决方法:保持生产环境相对湿度50%。
3、干膜起皱
(1)不良问题:干膜太黏,在操作过程中小心放板。
解决方法:一但出现碰触应该及时进行处理。
(2)不良问题:PCB贴膜前板子太热。
解决方法:板子预热温度不宜太高。
4、余胶
(1)不良问题:干膜质量差。
解决方法:更换干膜。
(2)不良问题:曝光时间太长。
解决方法:对所用的材料有一个了解进行合理的曝光时间。
(3)不良问题:显影液失效。
解决方法:换显影液。
PCB线路板为什么要做阻抗吗
阻抗对于PCB电路板的意义何在,PCB电路板为什么要做阻抗?本文介绍了什么是阻抗及阻抗的类型,其次介绍了PCB线路板为什么要做阻抗,后阐述了阻抗对于PCB电路板的意义,具体的跟随小编一起来了解一下。
什么是阻抗?
在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。阻抗的单位是欧。
阻抗类型
(1)特性阻抗
在计算机﹑无线通讯等电子信息产品中, PCB的线路中的传输的能量, 是一种由电压与时间所构成的方形波信号(square wave signal, 称为脉冲pulse),它所遭遇的阻力则称为特性阻抗。
(2)差动阻抗
驱动端输入极性相反的两个同样信号波形,分别由两根差动线传送,在接收端这两个差动信号相减。差动阻抗就是两线之间的阻抗Zdiff。
(3)奇模阻抗
两线中一线对地的阻抗Zoo,两线阻抗值是一致。
(4)偶模阻抗
驱动端输入极性相同的两个同样信号波形, 将两线连在一起时的阻抗Zcom。
(5)共模阻抗
两线中一线对地的阻抗Zoe,两线阻抗值是一致,通常比奇模阻抗大。
PCB线路板为什么要做阻抗?
pcb线路板阻抗是指电阻和对电抗的参数,对交流电所起着阻碍作用。在pcb线路板生产中,阻抗处理是的。原因如下:
1、PCB线路(板底)要考虑接插安装电子元件,接插后考虑导电性能和信号传输性能等问题,所以就会要求阻抗越低越好,电阻率要低于每平方厘米1&TImes;10-6以下。
2、PCB线路板在生产过程中要经历沉铜、电镀锡(或化学镀,或热喷锡)、接插件焊锡等工艺制作环节,而这些环节所用的材料都电阻率底,才能线路板的整体阻抗低达到产品质量要求,能正常运行。
3、PCB线路板的镀锡是整个线路板制作中容易出现问题的地方,是影响阻抗的关键环节。化学镀锡层大的缺陷就是易变色(既易氧化或潮解)、钎焊性差,会导致线路板难焊接、阻抗过高导致导电性能差或整板性能的不稳定。
4、PCB线路板中的导体中会有各种信号传递,当为提高其传输速率而提高其频率,线路本身如果因蚀刻、叠层厚度、导线宽度等因素不同,将会造成阻抗值得变化,使其信号失真,导致线路板使用性能下降,所以就需要控制阻抗值在一定范围内。
阻抗对于PCB电路板的意义
对电子行业来说,据行内调查,化学镀锡层致命的弱点就是易变色(既易氧化或潮解)、钎焊性差导致难焊接、阻抗过高导致导电性能差或整板性能的不稳定、易长锡须导致PCB线路短路以至烧毁或着火事件。
据悉,国内先研究化学镀锡的当是上世纪90年代初昆明理工大学,之后就是90年代末的广州同谦化工(企业),一直至今,10年来行内均有认可该两家机构是做得好的。其中,据我们对众多企业的接触筛选调查、实验观测以及长期耐力测试,证实同谦化工的镀锡层是低电阻率的纯锡层,导电和钎焊等质量可以到较高的水准,难怪他们敢对外其镀层在无须任何封闭及防变色剂保护的情况下,能保持一年不变色、不起泡、不脱皮、不长锡须。
后来当整个社会生产业发展到一定程度的时候,很多后来参与者往往是属于互相抄袭,其实相当一部分企业自己本身并没有研发或能力,所以,造成很多产品及其用户的电子产品(线路板板底或电子产品整体)性能不佳,而造成性能不佳的主要原因就是因为阻抗问题,因为当不合格的化学镀锡技术在使用过程中,其为PCB线路板所镀上去的锡其实并不是真正的纯锡(或称属单质),而是锡的化合物(即根本就不是金属单质,而是金属化合物,氧化物或卤化物,更直接地说是属于非金属物质)或锡化合物与锡金属单质的混合物,但单凭借肉眼是很难发现的…
因为PCB线路板的主体线路是铜箔,在铜箔的焊点上就是镀锡层,而电子元件就是通过焊锡膏(或焊锡线)焊接在镀锡层上面的,事实上焊锡膏在融熔状态焊接到电子元件和锡镀层之间的是金属锡(即导电良好的金属单质),所以可以简单扼要地指出,电子元件是通过锡镀层再与PCB板底的铜箔连接的,所以锡镀层的纯洁性及其阻抗是关键;又,但未有接插电子元件之前,我们直接用仪器去检测阻抗时,其实仪器探头(或称为表笔)两端也是通过先接触PCB板底的铜箔表面的锡镀层再与PCB板底的铜箔来连通电流的。所以锡镀层是关键,是影响阻抗的关键和影响PCB整板性能的关键,也是易于被忽略的关键。
众所周知,除金属单质外,其化合物均是电的不良导体或甚至不导电的(又,这也是造成线路中存在分布容量或传布容量的关键),所以锡镀层中存在这种似导电而非导电的锡的化合物或混合物时,其现成电阻率或未来氧化、受潮所发生电解反应后的电阻率及其相应的阻抗是相当高的(足已影响数字电路中的电平或信号传输,)而且其特征阻抗也不相一致。所以会影响该线路板及其整机的性能。
所以,就现时的社会生产现象来说,PCB板底上的镀层物质和性能是影响PCB整板特征阻抗的主要原因和直接的原因,但又由于其具有随着镀层老化及受潮电解的变化性,所以其阻抗产生的忧患影响变得更加隐性和多变性,其隐蔽的主要原因在于:不能被肉眼所见(包括其变化),第二不能被恒常测得,因为其有随着时间和环境湿度的改变而变的变化性,所以总是易于被人忽略。
PCB多层板表面处理方式分类:
1.热风整平涂布在PCB表面的熔融锡铅焊料和加热压缩空气流平(吹气平整)过程。使其形成抗铜氧化涂层,可提供良好的可焊性。热风焊料和铜在结合处形成铜 - 锡金属化合物,其厚度约为1~2mil;
2.有机抗氧化(OSP)通过化学方法在清洁的裸铜表面上生长一层有机涂层。这种PCB多层板薄膜具有抗氧化,耐热冲击,防潮,以保护铜表面在正常环境下不再生锈(氧化或硫化等);同时,在随后的焊接温度下,焊接用焊剂很容易快速去除;
3.镍金化学在铜表面,涂有厚实,良好的镍金合金电性能,可以保护PCB多层板。很长一段时间不像OSP,它只用作防锈层,它可以用于长期使用PCB并获得良好的电能。此外,它还具有其他表面处理工艺所不具备的环境耐受性;
4.化学镀银沉积在OSP与化学镀镍/镀金之间,PCB多层板工艺简单快速。暴露在炎热,潮湿和污染的环境中仍然提供良好的电气性能和良好的可焊性,但失去光泽。由于银层下没有镍,沉淀的银不具有化学镀镍/浸金的所有良好的物理强度;
5.在PCB多层板表面导体上镀镍金,镀一层镍然后镀一层金,镀镍主要是为了防止金与铜之间的扩散。有两种类型的镀镍金:软金(,这意味着它看起来不亮)和硬金(光滑,坚硬,耐磨,钴和其他元素,表面看起来更亮)。软金主要用于芯片包装金线;硬金主要用于非焊接电气互连。
6.PCB混合表面处理技术选择两种或两种以上表面处理方法进行表面处理,常见的形式有:镍金防氧化,镀镍金沉淀镍金,电镀镍金热风整平,常见形式有:镍金防 - 氧化,镀镍金沉淀镍金,电镀镍金热风整平,重镍和金热风平整。尽管PCB多层板表面处理过程的变化并不显着,并且似乎有些牵强,但应该注意的是,长期缓慢的变化将导致的变化。随着对环境保护的需求不断增加,PCB的表面处理工艺必将在未来发生变化。
FPC柔性电路板基础知识
柔性电路板(Flexible Printed Circuit 简称FPC)是以聚酰亚胺或聚酯薄膜为基材制成的一种具有高度可靠性,的可挠性印刷电路板。具有配线密度高、重量轻、厚度薄、弯折性好的特点。
柔性电路板(FlexiblePrintedCircuit,FPC),又称软性电路板、挠性电路板,其以质量轻、厚度薄、可自由弯曲折叠等优良特性而备受青睐…,但国内有关FPC的质量检测还主要依靠人工目测,成本高且效率低。而随着电子产业飞速发展,电路板设计越来越趋于、高密度化,传统的人工检测方法已无法满足生产需求,FPC缺陷自动化检测成为产业发展必然趋势。
柔性电路(FPC)是上世纪70年代美国为发展航天火箭技术发展而来的技术,是以聚脂薄膜或聚酰亚胺为基材制成的一种具有高度可靠性,曲挠性的印刷电路,通过在可弯曲的轻薄塑料片上,嵌入电路设计,使在窄小和有限空间中堆嵌大量精密元件,从而形成可弯曲的挠性电路。此种电路可随意弯曲、折迭重量轻,体积小,散热性好,安装方便,冲破了传统的互连技术。在柔性电路的结构中,组成的材料是是绝缘薄膜、导体和粘接剂。
组成材料
1、绝缘薄膜
绝缘薄膜形成了电路的基础层,粘接剂将铜箔粘接至了绝缘层上。在多层设计中,它再与内层粘接在一起。它们也被用作防护性覆盖,以使电路与灰尘和潮湿相隔绝,并且能够降低在挠曲期间的应力,铜箔形成了导电层。
在一些柔性电路中,采用了由铝材或者不锈钢所形成的刚性构件,它们能够提供尺寸的稳定性,为元器件和导线的安置提供了物理支撑,以及应力的释放。粘接剂将刚性构件和柔性电路粘接在了一起。另外还有一种材料有时也被应用于柔性电路之中,它就是粘接层片,它是在绝缘薄膜的两侧面上涂覆有粘接剂而形成。粘接层片提供了环境防护和电子绝缘功能,并且能够消除一层薄膜,以及具有粘接层数较少的多层的能力。
绝缘薄膜材料有许多种类,但是为常用的是聚酷亚胺和聚酯材料。目前在美国所有柔性电路制造商中接近80%使用聚酰亚胺薄膜材料,另外约20%采用了聚酯薄膜材料。聚酰亚胺材料具有非易燃性,几何尺寸稳定,具有较高的抗扯强度,并且具有承受焊接温度的能力,聚酯,也称为聚乙烯双苯二甲酸盐(Polyethyleneterephthalate简称:PET),其物理性能类似于聚酰亚胺,具有较低的介电常数,吸收的潮湿很小,但是不耐高温。
聚酯的熔化点为250℃,玻璃转化温度(Tg)为80℃,这限制了它们在要求进行大量端部焊接的应用场合的使用。在低温应用场合,它们呈现出刚性。尽管如此,它们还是适合于使用在诸如电话和其它无需暴露在恶劣环境中使用的产品上。聚酰亚胺绝缘薄膜通常与聚酰亚胺或者丙烯酸粘接剂相结合,聚酯绝缘材料一般是与聚酯粘接剂相结合。与具有相同特性的材料相结合的优点,在干焊接好了以后,或者经多次层压循环操作以后,能够具有尺寸的稳定性。在粘接剂中其它的重要特性是较低的介电常数、较高的绝缘阻值、高的玻璃转化温度和低的吸潮率。
2、导体
铜箔适合于使用在柔性电路之中,它可以采用电淀积(Electrodeposited简称:ED),或者镀制。采用电淀积的铜箔一侧表面具有光泽,而另一侧被加工的表面暗淡无光泽。它是具有柔顺性的材料,可以被制成许多种厚度和宽度,ED铜箔的无光泽一侧,常常经特别处理后改善其粘接能力。锻制铜箔除了具有柔韧性以外,还具有硬质平滑的特点,它适合于应用在要求动态挠曲的场合之中。
3、粘接剂
粘接剂除了用于将绝缘薄膜粘接至导电材料上以外,它也可用作覆盖层,作为防护性涂覆,以及覆盖性涂覆。两者之间的主要差异在于所使用的应用方式,覆盖层粘接覆盖绝缘薄膜是为了形成叠层构造的电路。粘接剂的覆盖涂覆所采用的筛网印刷技术。不是所有的叠层结构均包含粘接剂,没有粘接剂的叠层形成了更薄的电路和更大的柔顺性。它与采用粘接剂为基础的叠层构造相比较,具有更佳的导热率。由于无粘接剂柔性电路的薄型结构特点,以及由于消除了粘接剂的热阻,从而提高了导热率,它可以使用在基于粘接剂叠层结构的柔性电路无法使用的工作环境之中。
产前处理
在生产过程中,为了防止开短路过多而引起良率过低或减少钻孔、压延、切割等粗工艺问题而导致的FPC板报废、补料的问题,及评估如何选材方能达到客户使用的佳效果的柔性线路板,产前预处理显得尤其重要。
产前预处理,需要处理的有三个方面,这三个方面都是由工程师完成。是FPC板工程评估,主要是评估客户的FPC板是否能生产,公司的生产能力是否能满足客户的制板要求以及单位成本;如果工程评估通过,接下来则需要马上备料,满足各个生产环节的原材料供给,后,工程师对:客户的CAD结构图、gerber线路资料等工程文件进行处理,以适合生产设备的生产环境与生产规格,然后将生产图纸及MI(工程流程卡)等资料下放给生产部及文控、采购等各个部门,进入常规生产流程。
生产流程
双面板制
开料→ 钻孔→ PTH → 电镀→ 前处理→ 贴干膜 → 对位→曝光→ 显影 → 图形电镀 → 脱膜 → 前处理→ 贴干膜 →对位曝光→ 显影 →蚀刻 → 脱膜→ 表面处理 → 贴覆盖膜 → 压制 → 固化→ 沉镍金→ 印字符→ 剪切→ 电测 → 冲切→ 终检→包装 → 出货
单面板制
开料→ 钻孔→贴干膜 → 对位→曝光→ 显影 →蚀刻 → 脱膜→ 表面处理 → 贴覆盖膜 → 压制 → 固化→表面处理→沉镍金→ 印字符→ 剪切→ 电测 → 冲切→ 终检→包装 → 出货
特性
1、短:组装工时短
所有线路都配置完成。省去多余排线的连接工作
2、小:体积比PCB小
可以有效降低产品体积。增加携带上的便利性
3、轻:重量比 PCB (硬板)轻
可以减少终产品的重量
4、薄:厚度比PCB薄
可以提高柔软度。加强再有限空间内作三度空间的组装
铜箔基板(Copper Film)
铜箔:基本分成电解铜与压延铜两种。 厚度上常见的为1oz 1/2oz 和 1/3 oz
基板胶片:常见的厚度有1mil与1/2mil两种。
胶(接着剂):厚度依客户要求而决定。
覆盖膜保护胶片(Cover Film)
覆盖膜保护胶片:表面绝缘用。 常见的厚度有1mil与1/2mil.
胶(接着剂):厚度依客户要求而决定。
离形纸:避免接着剂在压着前沾附异物;便于作业。
补强板(PI Stiffener Film)
补强板: 补强FPC的机械强度,方便表面实装作业。常见的厚度有3mil到9mil.
胶(接着剂):厚度依客户要求而决定。
离形纸:避免接着剂在压着前沾附异物。
EMI:电磁屏蔽膜,保护线路板内线路不受外界(强电磁区或易受干扰区)干扰。
优缺点
多层线路板的优点:组装密度高、体积小、质量轻,因为高密度装配、部件(包括零部件)间的连线减少,从而增加了可靠性;能增加接线层,然后增加设计弹性;也可以构成电路的阻抗,可形成具有一定的高速传输电路,可以设定电路、电磁屏蔽层,还可安装金属芯层满足特殊热隔热等功能与需求;安装方便、可靠性高。
多层pcb板的缺点(不合格):成本高、周期长;需要高可靠性检验方法。多层印制电路是电子技术、多功能、高速度、小体积大容量方向的产物。随着电子技术的发展,特别是大规模和超大规模集成电路的广泛应用,多层印制电路密度较高的快速、、高数改变方向出现细纹。
PCB板材的Tg值
业界长期以来,Tg值是常见的用来划分FR-4基材的等级指标,通常认为Tg值越高,材料的可靠性越高。
比如下图老wu在南亚上边截取的关于FR-4板材的说明:
Tg135℃,板材用途:主机板、消费类电子产品等
Tg180℃,板材用途:CPU主板,DDR3 内存基板,IC封装用基板等等。
基材对于印刷电路板的作用,就像印刷电路板对于电子器件的作用一样重要。按照PCB的基材按性质可分为有机基板和无机基板两个大的体系。
有机基板由酚醛树脂浸渍的多层纸层或环氧树脂、聚酰亚胺、氰酸酯、BT 树脂等浸渍的无纺布或玻璃布层组成。这些基板的用途取决于 PCB 应用所需的物理特性,如工作温度、频率或机械强度。
无机基板主要包括陶瓷和金属材料,如铝、软铁、铜。这些基板的用途通常取决于散热需要。
我们常用的刚性印制板基板属于有机基板,比如FR-4环氧玻纤布基板,是以环氧树脂作粘合剂,以电子级玻璃纤维布作增强材料的一类基板。
我们看到,FR-4以环氧树脂作为粘合剂,树脂材料有一个重要特性参数:玻璃化转变温度Tg(glass transition temperature),指的是材料从一个相对刚性或“玻璃”状态转变为易变性或软化状态的温度转变点。
玻璃态物质在玻璃态和高弹态之间相互可逆转化的温度。啥意思?就是说FR-4基板的粘合剂环氧树脂若温度低于Tg,这时材料处于刚硬的“玻璃态”。当温度Tg时,材料会呈现类似橡胶般柔软可挠的性质。对!它~变【软】了~ 图片
玻璃态
树脂材料处于温度Tg以下的状态为坚硬的固体即玻璃态。在外力作用下有一定的变形但变形可逆,即外力消失后,其形变也随之消失,是大多数树脂的使用状态。
高弹态
当树脂受热温度超过Tg时,无定形状态的分子链开始运动,树脂进入高弹态。处于这一状态的树脂类似橡胶状态的弹性体,但仍具有可逆的形变性质。
注意,温度超过Tg值后,材料逐渐变软,是逐渐,而且只要树脂没有发生分解,当温度冷却到Tg值以下时,它还是可以变回之前性质相同的刚性状态。
氮素,有个Td值,叫热分解温度,树脂类材料被加热至某一高温点时,树脂体系开始分解。树脂内的化学键开始断裂并伴随有挥发成分溢出,那PCB基材里的树脂就变少了。Td点指的是这个过程开始发生的温度点。Td通常定义为失去原质量5%时对应的分解温度点。但这5%对于多层PCB来说是非常高的了。
我们知道,影响PCB上传输线特性阻抗的因素有,线宽,走线与参考平面间距,板材介电常数等等。而基板材料的树脂量对介电特性有很大的影响,而且树脂挥发后对控制走线与参考平面的间距也有影响。
对于无铅焊接工艺需要考虑这个Td值,比如传统的锡铅焊接工艺温度范围为210~245℃,而无铅焊接工艺温度范围为240~270℃。
下边两个这个截图是老wu在建滔官网上下载的两份板材的参数表做的对比,左边的是FR-4常规系列板材,右边是FR-4无铅板材
常规FR4 板材 KB-6160 Tg值为135℃,5%质量损失Td值为305℃
FR4无铅板材 KB-6168LE Tg值为 185℃,5%质量损失Td值为359℃
我们看到,常规FR4板材的Td值都在300℃以上,而有铅焊接工艺温度范围在240~270℃,Td值完全满足哇,为啥还要搞个无铅版本呢?
正如老wu上边所述,5%的树脂质量挥发率对于需要控制阻抗的多层PCB来说显得太大了,对于锡铅焊接工艺来说,210~245℃的温度材料基本不会出现明显的热分解,而无铅焊接的240~270℃温度区间,对于普通Tg FR-4 基材来说,已经开始损失1.5~3%的树脂质量。虽然不到IPC标准所要求的5%,但这损失的树脂质量也不可忽视。同时,这个分解水平,还可能会影响基材长期的可靠性或导致焊接过程中出现分层或空洞的缺陷,特别是需要多次焊接的过程或存在返修加热的情况。
所以,如果采用无铅焊接工艺的话,除了考虑Tg值,还要考虑Td值。
基板材料的性能在Tg值以上和在Tg值以下时差异很大,不过,Tg值一般被描述为一个非常的温度值,比如Tg135,并不是说温度一超过135℃基板就变得软趴趴,而是当温度接近Tg值开始,材料的物料性能会开始改变,它是一个逐步变化的过程。
树脂体系的Tg值对材料的性能影响主要有两个方面:
热膨胀的影响
树脂体系固化时间
板材受热膨胀,脑补一下画面,SMT焊接时BGA焊盘的间距是不是也就跟着变化了?而且,热膨胀导致的机械应力,会对PCB上的走线和焊盘的连接造成细微的裂纹,这些裂纹可能在PCB生产完毕后的开/短路测试时不会被发现,而在SMT等二次加热后故障就显现出来了,这往往让人很懵逼,而糟糕的情况是,SMT加热时暗病都没出现,在产品出去之后,在冷热交替的使用环境中,板材的受热膨胀让这些细微的裂纹随机性的发生,造成设备故障。
基板材料热性能参数除了标准Tg、Td值,还有热膨胀系数CTE,有X/Y轴方向的CTE也有Z轴方向的CTE。
Z轴的CTE对PCB的可靠性有很重要的影响。由于镀覆孔贯穿PCB的Z轴,所以基材中的热膨胀和收缩会导致镀覆孔扭曲和塑性形变,也会使PCB表面的铜焊盘变形。
而SMT时,X/Y轴的CTE则变得非常重要。特别是采用芯片级封装(CSP)和芯片直接贴装时,CTE的重要性更为,同时,X/Y轴的CTE也会影响覆铜箔层压板或PCB的内层附着力和抗分层能力。特别是采用无铅焊接工艺的PCB来说,每一层中的X/Y轴CTE值就显得尤其重要了。
那么,是不是高Tg值的基材就是好呢?在关于Tg值的许多讨论中,往往认为较高的Tg值总是对基材有利的,但情况也并非总是如此。可以确定的是,对于一种给定的树脂体系,高Tg值基材在受热时的材料高速率膨胀开始时间要相对晚一些,而整体膨胀则与材料的种类有很大关系。低Tg值的基材可能会比高Tg值的基材表现出更小的整体膨胀,这主要与树脂本身的CTE值,或者树脂配方中加入无机填料 降低了基材的CTE有关。
同时还要注意的是,有些低端的FR-4材料,标准Tg值是140℃的基材比标准Tg值是170℃的基材具有更高的热分解温度Td值。如上边老wu所述,Td对于无铅焊接来说是一个很重要的指标,一般建议选择Td数值较大的,而的FR-4往往同时具备高的Tg值和高Td值。
此外,高Tg值的基材往往比低Tg值的基材刚性更大且更脆,这往往会影响PCB制造过程的生产效率,特别是钻孔工序。
比如某创就发帖子说明,随着板子越来越密,过孔与过孔之间的间隙越来越小,对于材料要求越来越高,为此某创将提供TG=155的中TG板材为多层板收费服务!
为啥多收费?
TG=155的板材比TG=135的成本高20%左右,嗯 来料贵了
因为钻孔,中TG用新钻钻咀效果更佳(一般钻咀能磨4次),因为太硬
压合时间:普通TG=135的只需要压合110分钟,而中TG=1 55的压合150分钟
为啥要提供中或高Tg板材,板厂那边说,原因之一是因为高密的过孔,普通TG的过孔间距不能小于12MIL,而中TG不能小于 10MIL,因为板材有玻璃布,在钻孔的时候会有一些拉伤,两个过孔之间你拉一点我拉一点就形成了灯芯效应,而中TG因为硬,板材内的成份不一样,又加上用新钻咀能有效的防范灯芯效应,后续对于难度高的多层板,过孔间间隙太密,某创会强制客选择用中TG板材生产!
原因之二是基板的Tg提高了, 印制板的耐热性、耐潮湿性、耐化学性、耐稳定性等特征都会提高和改善。TG值越高,板材的耐温度性能越好,尤其在无铅喷锡制程中,高Tg应用比较多。
这是从板厂的可制造性方面考虑,而如果是PCB装配采用无铅焊接工艺的话,还需要综合考虑玻璃化转变温度Tg、分解温度Td、热膨胀系数CTE、吸水率、分层时间等等因素。